Monte Carlo Simulation of Implant Free InGaAs MOSFET

نویسنده

  • K. Kalna
چکیده

Performance of n-type implant free In0.25Ga0.75As MOSFETs with Ga2O3 dielectric is investigated using ensemble Monte Carlo device simulations. The implant free MOSFET concept takes an advantage of the high mobility in III-V materials to allow operation at very high speed and low power. A 100 nm gate length implant free In0.25Ga0.75As MOSFET with a layer structure derived from heterojunction transistors may deliver a drive current of 1800 A/m and transconductance up to 1342 mS/mm. This implant free transistor is then scaled in the both lateral and vertical dimensions to gate lengths of 70 and 50 nm. The scaled devices exhibit continuous improvement in the drive current up to 2600 A/m and 3259 A/m and transconductance of 2076 mS/mm and 3192 mS/mm, respectively. This demonstrates the excellent scaling potential of the implant free MOSFET concept.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulations of High-Performance Implant Free In0:3Ga0:7As Nano-MOSFETs for Low-Power CMOS Applications

The potential performance of implant free heterostructure In0 3Ga0 7As channel MOSFETs with gate lengths of 30, 20, and 15 nm is investigated using state-of-the-art Monte Carlo (MC) device simulations. The simulations are carefully calibrated against the electron mobility and sheet density measured on fabricated III-V MOSFET structures with a highdielectric. The MC simulations show that the 30 ...

متن کامل

Device and Circuit Performance of the Future Hybrid III-V and Ge based CMOS Technology

The device and circuit performance of a 20 nm gate length InGaAs and Ge hybrid CMOS based on an implant free quantum well (QW) device architecture is studied using a multiscale approach combining ensemble Monte Carlo simulation, drift-diffusion simulation, compact modelling, and TCAD mixedmode circuit simulation. We have found that the QW and doped substrate, used in the hybrid CMOS, help to re...

متن کامل

Full-Band Monte Carlo Investigation of Hot Carrier Trends in the Scaling of Metal-Oxide-Semiconducto - Electron Devices, IEEE Transactions on

A full-band Monte Carlo (MC) device simulator has been used to study the effects of device scaling on hot electrons in different types of n-channel metal-oxide-semiconductor fieldeffect transistor (MOSFET) structures. Simulated devices include a conventional MOSFET with a single source/drain implant, a lightly-doped drain (LDD) MOSFET, a silicon-on-insulator (SOI) MOSFET, and a MOSFET built on ...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

A New Backscattering Model for Nano-MOSFET Compact Modeling

For fast computation of drain current in Nano-MOSFET, we have developed a new backscattering model based on the accurate determination of ballistic and backscattering probabilities along the channel. The main elements of this model are deduced from careful analysis of transport in devices using Monte Carlo simulation. The backscattering coefficient is in very good agreement with the results of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006